Image for Cardiovascular Pharmacology Concepts, Richard E Klabunde PhD

Cardiovascular Pharmacology Concepts

Richard E. Klabunde, PhD

Clinical Disorders:

Therapeutic Classes:

Mechanism Classes:

Also Visit

Cardiovascular Physiology Concepts textbook cover

Click here for information on Cardiovascular Physiology Concepts, 2nd edition, a textbook published by Lippincott Williams & Wilkins (2011)


Cardiovascular Physiology Concepts textbook cover

Click here for information on Normal and Abnormal Blood Pressure, a textbook published by Richard E. Klabunde (2013)


Systemic Hypertension cont.

Causes of Hypertension

Mechanisms causing hypertension through increased cardiac output or increased systemic vascular resistance

The are two basic types of hypertension: primary (essential) hypertension and secondary hypertension. The vast majority of patients (90-95%) have essential hypertension, which is a form with no identifiable underlying cause. This form of hypertension is commonly treated with drugs in addition to lifestyle changes (e.g., exercise, proper nutrition, weight reduction, stress reduction).


A smaller number of patients (5-10%) have secondary hypertension that is caused by an identifiable underlying condition such as renal artery disease, thyroid disease, primary hyperaldosteronism, pregnancy, etc.

Some causes of secondary hypertension are listed below:

Renal artery stenosis (renovascular disease)

Renal artery disease can cause of narrowing of the vessel lumen (stenosis). The reduced lumen diameter increases the pressure drop along the length of the diseased artery, which reduces the pressure at the afferent arteriole in the kidney. Reduced arteriolar pressure and reduced renal perfusion stimulate renin release by the kidney. This increases circulating angiotensin II (AII) and aldosterone. These hormones increase blood volume by enhancing renal reabsorption of sodium and water. Increased AII causes systemic vasoconstriction and enhances sympathetic activity.  Chronic elevation of AII promotes cardiac and vascular hypertrophy. The net effect of these renal mechanisms is an increase in blood volume that augments cardiac output by the Frank-Starling mechanism. Therefore, hypertension caused by renal artery stenosis results from both an increase in systemic vascular resistance and an increase in cardiac output.

Chronic renal disease

Any number of pathologic processes (e.g., diabetic nephropathy, glomerulonephritis) can damage nephrons in the kidney. When this occurs, the kidney cannot excrete normal amounts of sodium which leads to sodium and water retention, increased blood volume, and increased cardiac output by the Frank-Starling mechanism. Renal disease may also result in increased release of renin leading to a renin-dependent form of hypertension. The elevation in arterial pressure secondary to renal disease can be viewed as an attempt by the kidney to increase renal perfusion and restore glomerular filtration.

Primary hyperaldosteronism

Increased secretion of aldosterone generally results from adrenal adenoma or adrenal hyperplasia.  Increased circulating aldosterone causes renal retention of sodium and water, so blood volume and arterial pressure increase.  Plasma renin levels are generally decreased as the body attempts to suppress the renin-angiotensin system; there is also hypokalemia associated with the high levels of aldosterone.


Emotional stress leads to activation of the sympathetic nervous system, which causes increased release of norepinephrine from sympathetic nerves in the heart and blood vessels, leading to increased cardiac output and increased systemic vascular resistance.  Furthermore, the adrenal medulla secretes more catecholamines (epinephrine and norepinephrine).  Activation of the sympathetic nervous system increases circulating angiotensin II, aldosterone, and vasopressin, which can increase systemic vascular resistance.  Prolonged elevation of angiotensin II and catecholamines can lead to cardiac and vascular hypertrophy, both of which can contribute to a sustained increase in blood pressure.

Sleep Apnea

Sleep apnea is a disorder in which people repeatedly stop breathing for short periods of time (10-30 seconds) during their sleep. This condition is often associated with obesity, although it can have other causes such as airway obstruction or disorders of the central nervous system. These individuals have a higher incidence of hypertension. The mechanism of hypertension may be related to sympathetic activation and hormonal changes associated with repeated periods of apnea-induced hypoxia and hypercapnea, and from stress associated with the loss of sleep.

Hyper- or hypothyroidism

Excessive thyroid hormone induces systemic vasoconstriction, an increase in blood volume, and increased cardiac activity, all of which can lead to hypertension.  It is less clear why some patients with hypothyroidism develop hypertension, but it may be related to decreased tissue metabolism reducing the release of vasodilator metabolites, thereby producing vasoconstriction and increased systemic vascular resistance.


Catecholamine secreting tumors in the adrenal medulla can lead to very high levels of circulating catecholamines (both epinephrine and norepinephrine).  This leads to alpha-adrenoceptor mediated systemic vasoconstriction and beta-adrenoceptor mediated cardiac stimulation, both of which contribute to significant elevations in arterial pressure.  Despite the elevation in arterial pressure, tachycardia occurs because of the direct effects of the catecholamines on the heart and vasculature.  Excessive beta-adrenoceptor stimulation in the heart often leads to arrhythmias.  The pheochromocytoma is diagnosed by measuring plasma or urine catecholamine levels and their metabolites (vanillylmandelic acid and metanephrine).


This is a condition that sometimes develops during the third trimester of pregnancy that causes hypertension due to increased blood volume and tachycardia.  The former increases cardiac output by the Frank-Starling mechanism.

Aortic coarctation

Coarctation, or narrowing of the aorta (typically just distal to the left subclavian artery), is a congenital defect that obstructs aortic outflow leading to elevated pressures proximal to the coarctation (i.e., elevated arterial pressures in the head and arms).  Distal pressures, however, are not necessarily reduced as would be expected from the hemodynamics associated with a stenosis.  The reason for this is that reduced systemic blood flow, and in particular reduced renal blood flow, leads to an increase in the release of renin and an activation of the renin-angiotensin-aldosterone system.  This in turn elevates blood volume and arterial pressure.  Although the aortic arch and carotid sinus baroreceptors are exposed to higher than normal pressures, the baroreceptor reflex is blunted due to structural changes in the walls of vessels where the baroreceptors are located.  Also, baroreceptors become desensitized to chronic elevation in pressure and become "reset" to the higher pressure.

Go to Next Page
Antihypertensive Drugs

Revised 06/17/08

DISCLAIMER: These materials are for educational purposes only, and are not a source of medical decision-making advice.